## Question 21

What is wrong with the following expressions? How can you correct them? (a) $C=\overrightarrow{\mathbf{A}} \overrightarrow{\mathbf{B}}$, (b)
$\overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{A}} \overrightarrow{\mathbf{B}},(\mathrm{c}) C=\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}$, (d) $C=A \overrightarrow{\mathbf{B}}$, (e) $C+2 \overrightarrow{\mathbf{A}}=B$, (f) $\overrightarrow{\mathbf{C}}=A \times \overrightarrow{\mathbf{B}}$, (g) $\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}$, (h) $\overrightarrow{\mathbf{C}}=2 \overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}$, (i) $C=\overrightarrow{\mathbf{A}} / \overrightarrow{\mathbf{B}}$, and (j) $C=\overrightarrow{\mathbf{A}} / B$.

## Solution

(a) Vector multiplication that results in a scalar is the dot product: $C=\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}$
(b) Vector multiplication that results in a vector is the cross product: $\overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}$
(c) The cross product yields a vector: $\overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}$
(d) Multiplying a vector by a scalar yields a vector: $\overrightarrow{\mathbf{C}}=A \overrightarrow{\mathbf{B}}$
(e) Only scalars can add with other scalars, and only vectors can add with other vectors: $C+2 A=B$ or $\overrightarrow{\mathbf{C}}+2 \overrightarrow{\mathbf{A}}=\overrightarrow{\mathbf{B}}$
(f) If $A$ is actually a scalar, then it multiplies the vector normally. Writing it with $\times$ makes it seem like the cross product of a scalar and a vector, which is erroneous. $\overrightarrow{\mathbf{C}}=A \overrightarrow{\mathbf{B}}$ or $\overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}$
(g) The dot product yields a scalar, and the cross product yields a vector. Take the magnitude of the vector to make it a scalar. $\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=|\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}|$
(h) The dot product yields a scalar, and the cross product yields a vector. Take the magnitude of the vector to make it a scalar. $|\overrightarrow{\mathbf{C}}|=2 \overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}$
(i) There's no such thing as vector division. Change the denominator to a scalar. $\overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{A}} / B$
(j) The left side is a scalar, and the right side is a vector. Make the left side a vector as well. $\overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{A}} / B$

