Question 21

What is wrong with the following expressions? How can you correct them? (a) $C = \overrightarrow{\mathbf{A}} \overrightarrow{\mathbf{B}}$, (b) $\overrightarrow{\mathbf{C}} = \overrightarrow{\mathbf{A}} \overrightarrow{\mathbf{B}}$, (c) $C = \overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}$, (d) $C = A \overrightarrow{\mathbf{B}}$, (e) $C + 2 \overrightarrow{\mathbf{A}} = B$, (f) $\overrightarrow{\mathbf{C}} = A \times \overrightarrow{\mathbf{B}}$, (g) $\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}} = \overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}$, (h) $\overrightarrow{\mathbf{C}} = 2 \overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}$, (i) $C = \overrightarrow{\mathbf{A}} / \overrightarrow{\mathbf{B}}$, and (j) $C = \overrightarrow{\mathbf{A}} / B$.

Solution

- (a) Vector multiplication that results in a scalar is the dot product: $C = \overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}$
- (b) Vector multiplication that results in a vector is the cross product: $\vec{\mathbf{C}} = \vec{\mathbf{A}} \times \vec{\mathbf{B}}$
- (c) The cross product yields a vector: $\vec{\mathbf{C}} = \vec{\mathbf{A}} \times \vec{\mathbf{B}}$
- (d) Multiplying a vector by a scalar yields a vector: $\vec{\mathbf{C}} = A\vec{\mathbf{B}}$
- (e) Only scalars can add with other scalars, and only vectors can add with other vectors: $C + 2A = B \text{ or } \overrightarrow{\mathbf{C}} + 2\overrightarrow{\mathbf{A}} = \overrightarrow{\mathbf{B}}$
- (f) If A is actually a scalar, then it multiplies the vector normally. Writing it with \times makes it seem like the cross product of a scalar and a vector, which is erroneous. $\overrightarrow{\mathbf{C}} = A\overrightarrow{\mathbf{B}}$ or $\overrightarrow{\mathbf{C}} = \overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}$
- (g) The dot product yields a scalar, and the cross product yields a vector. Take the magnitude of the vector to make it a scalar. $\vec{\mathbf{A}} \cdot \vec{\mathbf{B}} = \left| \vec{\mathbf{A}} \times \vec{\mathbf{B}} \right|$
- (h) The dot product yields a scalar, and the cross product yields a vector. Take the magnitude of the vector to make it a scalar. $\left| \overrightarrow{\mathbf{C}} \right| = 2\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}$
- (i) There's no such thing as vector division. Change the denominator to a scalar. $\vec{\mathbf{C}} = \vec{\mathbf{A}}/B$
- (j) The left side is a scalar, and the right side is a vector. Make the left side a vector as well. $\vec{C} = \vec{A}/B$